
Math 220 Problems

1. Let ~a,~b,~c be three 3-D vectors: ~a = a1i+a2j+a3k, etc. Each vector can be identifyed with a column matrix,
for instance

~a←→ A =

 a1

a2

a3


Based on this correspondence, prove the following:
a) the scalar product ~a ·~b is equal to AT ·B, where A,B are the columns associated to the two vectors;
b) the vector product ~b× ~c is associated to the column 0 −b3 b2

b3 0 −b1
−b2 b1 0

 ·
 c1

c2

c3


c) the mixed product ~a · (~b× ~c) is equal to the determinant of the matrix a1 a2 a3

b1 b2 b3

c1 c2 c3


d) The mixed product of any three vectors is zero if any two of them are parallel to each other;
e)

~a · (~b× ~c) = ~c · (~a×~b) = −~a · (~c×~b).

2. Consider the 2× 2 real matrix

M =

[
1+a

2
1−a

2
1−a

2
1+a

2

]
,

where a ∈ [0, 1).
a) Compute the determinant of M .
b) Compute the matrix L = lim

n→∞
Mn and its determinant.

c) Verify whether det(L) = lim
n→∞

(detM)n.
d) Assume that the matrix M describes the transition probabilities for a particle in a two-state system, such as
a particle diffusing from container A to container B through a permeable wall. If at time tn = n seconds, the
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probabilities for the particle to be found in containers A,B are respectively Pan, P bn, then at time tn+1 = n+ 1
seconds, they become [

Pan+1

Pbn+1

]
= M ·

[
Pan

Pbn

]
Prove that if Pan + Pbn = 1, then Pan+1 + Pbn+1 = 1.
e) Prove that at time t∞ = lim

n→∞
tn, the probabilities for finding the particle on either side of the wall[

Pa∞

Pb∞

]
= lim

n→∞
Mn ·

[
Pa0

Pb0

]
are equal to each other, regardless of the initial probabilities Pa0, P b0.

3. A particle of mass m and electric charge q enters a region of constant magnetic field ~B = B1i +B2j +B3k.
The particle moves according to Newton’s IInd Law

m
d~v

dt
= ~FL = q~v × ~B,

where ~FL is the Lorentz force.
a) Use the results of problem 1 and prove that the equation can be rewritten as

d

dt

 v1

v2

v3

 = − q

m

 0 −B3 B2

B3 0 −B1

−B2 B1 0

 ·
 v1

v2

v3


b) Assume a solution of the type  v1(t)

v2(t)
v3(t)

 = eλt

 w1

w2

w3

 ,
where λ is a constant to be determined and ~w is a constant vector, the velocity at time t = 0. Simplify the
exponential factor and write the resulting system of linear equations for the unknown quantities w1, w2, w3.
c) Determine for which values of λ the system of equations has nontrivial solutions.

4. Let ~r = xi + yj be a vector in the plane, corresponding to the complex number z = reiθ.
a) Rotating the vector ~r counterclockwise by an angle α leads to the vector ~r′ = x′i + y′j, corresponding to the
complex number z′ = r′eiθ

′
. Find the relations between r′, θ′ and r, θ.

b) Consider the columns

[
x

y

]
,

[
x′

y′

]
associated to these two vectors and write the relations between coordi-

nates as
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[
x′

y′

]
= R ·

[
x

y

]
,

where R is a 2× 2 real matrix to be determined.
c) Compute the determinant of R and its inverse, R−1.
d) Compute the transpose of R, RT and prove that RT = R−1.
e) Using the results of problem 1 and part d) above, prove that the scalar product of two vectors ~r1, ~r2 is equal
to the scalar product between the corresponding vectors rotated by the same angle, R~r1 and R~r2.

5. Consider the equation of motion for a simple harmonic oscillator

m
d2x

dt2
= −kx

and solve it by the follwing method:
a) Define ω2

0 = k
m and rewrite the equation as

dv

dt
= −ω2

0x,

where v = dx
dt .

b) Find the matrix M in the expression

d

dt

[
x

v

]
= M ·

[
x

v

]
c) Assume a solution of the type [

x

v

]
(t) = eλt

[
x0

v0

]
,

where x0, v0 are the initial position and velocity and λ is a constant to be determined.
d) Find the values of λ for which the linear system of equations in x0, v0 has nontrivial solutions.
e) Write the most general combination of solutions found at d).

6. Computing Potentials As known from Newtonian mechanics and from electrostatics, the potential energy
of interaction (in three dimensions) between two point charges q1 and q2 (in mechanics, between two point
masses m1 and m2) is given by the formula

W (q1, q2) = K
q1q2

r
, (1)

where K is a constant and r is the distance between the two points. The force associated with this energy has
components
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Fx = −∂W
∂x

, Fy = −∂W
∂y

, Fz = −∂W
∂z

(2)

Use the equations (1) and (2) to compute the energy and the z component of the force acting of the point
particle for the following situations:

a) point charge q, situated at (0, 0, z) and interacting with the infinite plane z = 0, with uniform charge
density σ;

b) point charge q, situated at (0, 0, z) and interacting with the disc z = 0, 0 ≤ r ≤ R, with uniform charge
density σ;

c) point charge q, situated at (0, 0, z) and interacting with the spherical shell r = R,R < z, with uniform
charge density σ;

d) point charge q, situated at (0, 0, z) and interacting with the sphere r ≤ R,R < z, with uniform charge
density ρ;

e) Is it possible to obtain as result an infinite energy and a finite force? Interpret your result.

7. Computing Moments of Inertia Find the moments of inertia relative to the x, y and z axes for the
following uniform mass distributions of density 1:
a) the disc r ≤ R, z = 0;
b) the sphere r ≤ R;
c) the domain −L ≤ x ≤ L,−W ≤ y ≤W, z = 0;
d) the cylinder r ≤ R,−H ≤ z ≤ H.

8. Maxwell’s Equations in Differential and Integral Forms
Our fundamental knowledge of electromagnetism can be summarized in four linear, partial differential equa-

tions, describing the electric and magnetic fields, ~E and ~B, as functions of space and time.
In differential form, these equations read:

~∇× ~E = −∂ ~B
∂t Faraday

~∇× ~B = 1
c2
∂ ~E
∂t +µ0

~j Ampère
~∇ · ~E = ρ

ε0
Gauss

~∇ · ~B = 0,

and are supplemented by the equation of continuity

∂ρ

∂t
+ ~∇ ·~j = 0.

The Ampère and Gauss equations are also referred to as the equations with sources, because they indicate the
dependence of the electric and magnetic fields on the sources of these fields, the electric charge density ρ and
the electric current density ~j, respectively.
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a) Rewrite Maxwell’s equations for static fields (all time derivatives are zero).
b) Using the divergence theorem, prove that the Gauss law has the integral form

Φe =
∮
S

~E · d~S =
QV
ε0
,

where Φe is the electric field flux though the closed surface S, enclosing the volume V , and QV is the total
electric charge in the volume V .

Use the integral form and symmetry arguments to compute the electric field produced by the following
charge densities:

(i) point charge q, placed at the origin, in three dimensions; (ii) point charge q, placed at the origin, in two
dimensions; (iii) point charge q, placed at the origin, in one dimension; (iv) sphere of charge Q, with center at
the origin, in three dimensions.

c) Use the divergence theorem for the last of the four equations and show (by analogy with (b)) that magnetic
point charges (magnetic monopoles) do not exist.

d) Using Stoke’s theorem, prove that the Ampère law for static fields has the integral form∮
C

~B · d~l = µ0

∫
S

~j · d~S = µ0IS ,

where C is any closed curve, and S any surface that has C as boundary. IS is the total current flowing through
the surface S.

Use the integral form and symmetry arguments to compute the magnetic field produced by a current of
density

~j(r) = rk,

flowing along an infinitelly long cylinder of radius R, parallel to the z axis.
e) Using Stoke’s theorem, prove that the Faraday law has the integral form

dΦm

dt
= −

∮
C

~E · d~l,

where Φm is the magnetic field flux though the surface S, of boundary the closed curve C.
f) Prove that ~∇ · (~∇× ~B) = 0. Use this result and the equation of continuity to show that the constant c is

the speed of light:

c =
1

√
ε0µ0

.

9. Electromagnetic Potentials
Consider Maxwell’s equations for static fields (all time derivatives are zero).
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a) Show that the Faraday equation proves that the electrostatic field ~E is conservative and it can be derived
from a scalar function, the electrostatic potential φ:

~E = −~∇φ.

b) Prove using the Maxwell equation that the magnetic field ~B can be derived from a vector function, the
vector potential ~A:

~B = ~∇× ~A.

c) Use the Gauss law and show that the electrostatic potential satisfies the Poisson equation

∆φ = (~∇)2φ = − ρ
ε0
.

d) Use the Ampère law and show that the components of the vector potential satisfy the Poisson equation

∆( ~A)i = (~∇)2( ~A)i = −µ0(~j)i,

where i = x, y, z, provided that ~∇ · ~A = 0.
e) Using the definitions, identify the conservative fields and find their corresponding potentials:

(i) x̂i + yĵ; (ii) yî + xĵ; (iii) î ; (iv) x̂i+yĵ+zk
r3

.

f) Using the definition, identify the zero divergence fields and find their vector potentials:
(i) x̂i− yĵ; (ii) yî + xĵ; (iii) î + ĵ.
g) Assume that the sources are zero in the equations for static fields. Is it possible to have non-zero fields

without sources? Can the potentials be non-vanishing without sources?

10. Electromagnetic Waves
Consider the time dependent Maxwell equations, where all the sources are zero.
a) Prove that all components of both the electric and the magnetic fields satisfy the wave equation

∆f − 1
c2

∂2f

∂t2
= 0.

b) Assume that the electric field has only one component, along x, and that the magnetic field has only one
component, along y. Identify which of the fields are solutions to the wave equation and find the magnetic field
that corresponds to each of them:

(i) ~E = cos(z + ct)̂i; (ii) ~E = sin(z − ct)̂i; (iii) ~E = cos3(z)̂i; (iv) ~E = zct̂i.
c) Is it possible to have an electromagnetic wave propagating along the z direction without any charges or

currents being present?

11. Electromagnetic Static Field Energy
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Consider again Maxwell’s equations for static fields
~∇× ~E = 0
~∇× ~B = µ0

~j
~∇ · ~E = ρ

ε0
~∇ · ~B = 0 ,

together with the definitions of potentials

~E = −~∇Φ, ~B = ~∇× ~A.

a) Prove the identity

~∇(Φ ~E) =
ρΦ
ε0
− ~E · ~E.

Using this identity, show that

1
ε0

∫
V
ρΦdτ =

∫
V
| ~E|2dτ +

∮
S

Φ ~E · d~σ,

where V is any volume and S is the closed surface that bounds V .

The total energy of the electrostatic field is given by

We =
1
2

∫
R3
ρΦdτ,

and the integral is extended to the whole space. Assuming that the surface integral in the previous result is
zero in this limit, show that the total energy of the electrostatic field is

We =
ε0
2

∫
R3
| ~E|2dτ.

Use this result to prove that if the charge density is zero everywhere, the electric field ~E must also vanish
everywhere (no electrostatic field can exist without electric charges).

b) Demonstrate that

~∇ · ( ~A× ~B) = ~B · ~B − µ0
~A ·~j.

Using this identity, show that ∫
V

~j · ~Adτ =
1
µ0

∫
V
| ~B|2dτ +

∮
S

~A× ~B · d~σ,

where V is any volume and S is the closed surface that bounds V .

The total energy of the magnetostatic field is given by
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Wm =
1
2

∫
R3

~j · ~Adτ,

and the integral is extended to the whole space. Assuming that the surface integral in the previous result is
zero in this limit, show that the total energy of the magnetostatic field is

Wm =
1

2µ0

∫
R3
| ~B|2dτ.

Use this result to prove that if the current density is zero everywhere, the magnetic field ~B must also vanish
everywhere (no magnetostatic field can exist without electric currents).

12. Solving Maxwell’s Equations
a) Consider the complete Maxwell’s equations for vacuum

~∇× ~E = −∂ ~B
∂t

~∇× ~B = 1
c2
∂ ~E
∂t +µ0

~j
~∇ · ~E = ρ

ε0
~∇ · ~B = 0,

and assume a solution of the type

~E = −~∇Φ− ∂ ~A

∂t
, ~B = ~∇× ~A.

Prove that this substitution solves the equations without sources.

b) Use the substitution in the equations with sources and show that they become{
∆ ~A− 1

c2
∂2 ~A
∂t2

= −µ0
~j +~∇(~∇ · ~A+ 1

c2
∂Φ
∂t )

∆Φ + ∂(~∇· ~A)
∂t = − ρ

ε0
.

c) Impose the condition (called gauge condition)

~∇ · ~A+
1
c2

∂Φ
∂t

= 0

and show that the equations with sources become
∆ ~A− 1

c2
∂2 ~A
∂t2

= −µ0
~j

∆Φ− 1
c2
∂2Φ
∂t2

= − ρ
ε0
.

Show that for static fields these equations become Poisson equations.

13. Electromagnetic Waves and Fourier Analysis
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In homework set 8 we showed that in the absence of sources, the equations satisfied by the electric and
magnetic fields are 

~∇× ~E = −∂ ~B
∂t

~∇× ~B = 1
c2
∂ ~E
∂t

~∇ · ~E = 0
~∇ · ~B = 0,

and they lead to the wave equations

∆ ~E − 1
c2

∂2 ~E

∂t2
= 0, ∆ ~B − 1

c2

∂2 ~B

∂t2
= 0.

In the following, we assume that all the fields are functions of z and t only (no x, y dependence).
a) Prove that if the electric field has only one nonzero component, along x, then the magnetic field has only

one nonzero component, along y.
b) Solve the wave equation for Ex(z, t) subject to the initial condition Ex(z, 0) = cos(kz) and boundary

condition Ex(0, t) = cos(ωt), where ω and k are given constants.
c) Find the magnetic field By(z, t) corresponding to the electric field in b).

Review Questions

14. Eigenvectors, Eigenvalues and Systems of Linear Equations

a) Consider the equation of motion (for a harmonic oscillator with friction)

d2x

dt2
= −3

dx

dt
− 2x.

(i). Denote dx
dt = v(t) and rewrite the equation in the form[

dx
dt
dv
dt

]
= A ·

[
x

v

]
,

where A is a 2× 2 matrix of real numbers to be determined.
(ii). Assume that the solution has the form[

x(t)
v(t)

]
= eλt

[
x0

v0

]
,

where x0, v0 are constants, and find all the possible values of λ (the eigenvalues) for which the system of equations
has nontrivial solutions.
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(iii). Find the eigenvectors corresponding to the eigenvalues determined in (ii).

b) Consider the equation (for rotations in the plane)[
dx
dt
dy
dt

]
=

[
0 1
−1 0

]
·

[
x

y

]
.

(i). Assume that the solution has the form[
x(t)
y(t)

]
= eλt

[
x0

v0

]
,

where x0, y0 are constants, and find all the possible values of λ (the eigenvalues) for which the system of equations
has nontrivial solutions.

(ii). Find the eigenvectors corresponding to the eigenvalues determined in (i).
(iii). Using the equation, prove that for any value of t,

[
x(t) y(t)

]
·

[
dx
dt
dy
dt

]
= 0,

and from here, that

d

dt

[
x2(t) + y2(t)

]
= 0.

Interpret the result.

15. Partial Differentiation Consider the differential equation

∂2f

∂x2
+ 3

∂2f

∂x∂y
+ 2

∂2f

∂y2
= 0.

(i). Perform the change of variables {
x = r + s

y = r + 2s

and rewrite the equation in the new variables.
(ii). Identify which ones of the following functions are solutions for this equation:

A) f(x, y) = cos3(x) B) f(x, y) = ey−x + sin2(2x− y) C) f(x, y) = ln[(2x− y)(y − x)].

16. Lagrange Multipliers
a) Find the distance from the origin to the plane given by the equation
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x

m
+
y

n
+
z

p
= 1,

where m,n, p are non-zero constants. The distance from the origin to a plane is given by the minimum of the
function f(x, y, z) =

√
x2 + y2 + z2, subject to the constraint equation describing the plane.

b) Find the minimum value of the energy

W (I, V ) =
CV 2

2
+
RI2

2
,

subject to the average power constraint

P = IV = constant,

where R,C, P are constants.

17. Infinite Series
a) Find

lim
x→0

sinx
x

b) Compute

FN (q) = 1 + eiq + e2iq + . . .+ ei(N−1)q,

where q is a real number and N > 1.
c) Find the absolute value of FN (q) and use it to derive

lim
q→0
|FN (q)|

d) Are the limits lim
N→∞

lim
q→0
|FN (q)| and lim

q→0
lim
N→∞

|FN (q)| equal to each other?

e) Find the sum of the series

∞∑
n=3

4
n2 − 4

17. a) Compute

lim
x→0

[
6

sin2(x)
+

ln(1− x)
x− sin(x)

]
b) Use Euler’s formula to prove that
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2 cos(α) cos(β) = cos(α+ β) + cos(α− β).

for any real numbers α, β.

18. a) Find the distance from the origin to the plane given by the equation x+ y + z = 1.
b) Find the values of the real number a for which the following system of equations has a unique solution:

x + ay = 1
ax + y = 1
x + y = a

19. a) Prove that the ellipse
x2

a2
+
y2

b2
= 1 can be parametrized by{

x = a cos(t)
y = b sin(t),

where t ∈ [0, 2π).
b) Compute the area of the ellipse given at point a).

20. a) Compute the line integral
∮

~F · d~r of the vector ~F (~r) = k̂× ~r along the circle (x− 1)2 + (y − 1)2 = 1.

b) Compute the surface integral
∮

~F · d~σ of the vector ~F (~r) = ~r through the surface of the cylinder 0 ≤ z ≤

1, 0 ≤ x2 + y2 ≤ 1.

21. Find the Fourier series of the function

f(x) =
(
x− π

2

)2
, x ∈ [−π, π).
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